Aufgabe C3

In einem kartesischen Koordinatensystem sind der Punkt P (-3; 5; 3) sowie die Geraden g und h gegeben durch:

g:
$$\vec{x} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 1 \\ 0.5 \end{pmatrix}$$
, $r \in R$ und $h: \vec{x} = \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 0.5 \\ -0.5 \\ 2 \end{pmatrix}$, $s \in R$

a) Weisen Sie nach, dass der Punkt P nicht auf der Gerade g liegt! Geben Sie eine Gleichung der Ebene ε an, die den Punkt P und die Gerade g enthält!

2BE

b) Zeigen Sie, dass die Geraden g und h windschief sind und ihre Richtungsvektoren zueinander senkrecht verlaufen!

4 BE

c) Gerade h durchstößt die Ebene ε (aus Aufgabe a) im Punkt D. Ermitteln Sie die Koordinaten des Durchstoßpunktes D!

3 BE

d) Eine Gerade k verläuft durch den Punkt P und schneidet die Gerade g im Punkt S(-2; 5; 2).

Berechnen Sie die Größe des Schnittwinkels der Geraden k und g!

3 BE

e) Gegeben ist der Punkt $Q\left(-\frac{8}{3}; \frac{17}{3}; \frac{7}{3}\right)$.

Zeigen Sie, dass das Dreieck PQS gleichschenklig und rechtwinklig ist!

4 BE

Parallel zur Strecke PQ verläuft durch den Punkt S die Gerade t. Geben Sie für t eine Gleichung an!

Für welche Punkte U und V auf der Geraden t beträgt der Flächeninhalt der Trapeze PQSU und PQVS jeweils 2 FE?

Bestimmen Sie die Koordinaten der Punkte U und V!

4 BE

Lösungen zu Aufgabe C3

a)	Nachweis: P ∉ g	2 BE
	Gleichung für ϵ , z.B. : $\vec{x} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} + u \cdot \begin{pmatrix} -1 \\ 1 \\ 0,5 \end{pmatrix} + v \cdot \begin{pmatrix} -3 \\ 2 \\ 2 \end{pmatrix}$; $u, v \in R$	
b)	Nachweis der Orthogonalität	4 BE
	keine gemeinsamen Punkte von g und h	
c)	Ansatz	3 BE
	Bearbeiten des Gleichungssystems	
	Koordinaten des Durchstoßpunktes: $D(-1;1;3)$	
d)	Ansatz und Geradengleichung $\rightarrow \overrightarrow{OX} = \begin{pmatrix} -3 \\ 5 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	3 BE
	Ergebnis: $\alpha = 45^{\circ}$	
e)	Ergebnis: $\alpha = 45^{\circ}$ Nachweise: $\left \overrightarrow{QS} \right = \left \overrightarrow{QP} \right = 1 \; ; \; \overrightarrow{QP} \circ \overrightarrow{QS} = 0$	4 BE
f)	Geradengleichung für t	4 BE
	z.B.: $\vec{x} = \begin{pmatrix} -2 \\ 5 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}, s \in R$	
	Ansatz für einen der Punkte U oder V	
	z. B.: $\overrightarrow{OU} = \overrightarrow{OS} - 3 \cdot \overrightarrow{PQ}$	
	Ergebnisse: $U(-3; 3; 4)$ und $V(-1; 7; 0)$	